

Microsoft's data centers are not yet on track on reducing water use and replenishing more water than they consume. But nature has already perfected the solution.

A passive cooling system for data centers that enhances sustainability

The Problem

Data centers consume massive amounts of energy and water for cooling, leading to high operational costs and environmental impact.

Traditional cooling systems consume energy and rely on water availability, this is unsustainable in water scarce regions.

High humidity environments present an untapped opportunity for water harvesting, but current technologies fail to utilize it efficiently.

The Solution

A passive cooling system inspired by the **Stenocara beetle**, integrating hydrophobic panels with alternating hydrophilic nodes.

Panels **passively** capture moisture from the air, reducing reliance on external water resources.

Collected water is reused in the cooling system, lowering energy consumption and improving efficiency.

The Impact

Sustainability & cost-effectiveness, making data centers more environmentally friendly and economically viable, while saving more than 100 Million Liters of water per data center annually, in humid places.

Scalable and adaptable for existing and new data centers, enabling widespread industry adoption.

Supports long-term operational savings while aligning with global sustainability goals, such as waterpositive initiatives.

Microsoft's invested 2.7B in Brazil to enhance their data center infrastructure

In September 2024, Microsoft announced plans to invest 14.7 billion Reais (~\$2.7 billion) over three years to expand cloud computing and AI infrastructure in Brazil's burgeoning data center market. As of March 2025, with 60 operational data centers and 45 more planned, Brazil is undoubtedly laying the foundation for a robust digital future.

However, this rapid expansion presents challenges. Brazil's diverse climate necessitates innovative solutions to manage high humidity and temperature levels. Furthermore, data centers consume substantial amounts of energy and water to operate effectively, making it imperative to implement measures that protect Brazil's rich tropical environment.

Addressing these challenges is crucial to solidifying Brazil's role as a hub for data scalability in Latin America.

60 45
operational & planned data centers

Microsoft invested \$2.7B

in Brazil to enhance their data center infrastructure.

A single drop of humidity can creep through microscopic cracks, setting off a domino effect

75-95%

corrosion, and component degradation.

average humidity range in Brazil

In Brazil, average humidity ranges from **75%–90%**, significantly higher than the ideal **45%–55%** range for data centers. This gap must be controlled to minimize static electricity risks and prevent condensation on circuits and sensitive equipment. Condensation can cause short circuits, **leading to shutdowns**, **data loss**, **and disruptions across entire networks**. Prolonged exposure to high humidity stresses electronic components, increases maintenance needs, and reduces operational efficiency.

Managing humidity also places a heavy load on cooling systems, driving energy-intensive mechanical cooling and raising concerns about the sustainability of data center growth in Brazil. For Brazil's Al infrastructure to scale sustainably, it must rely less on mechanical cooling and prioritize humidity control to ensure operational stability and prevent cascading failures.

Brazil's Al infrastructure needs to rely less on mechanical air cooling due to large scale water/energy waste

40%

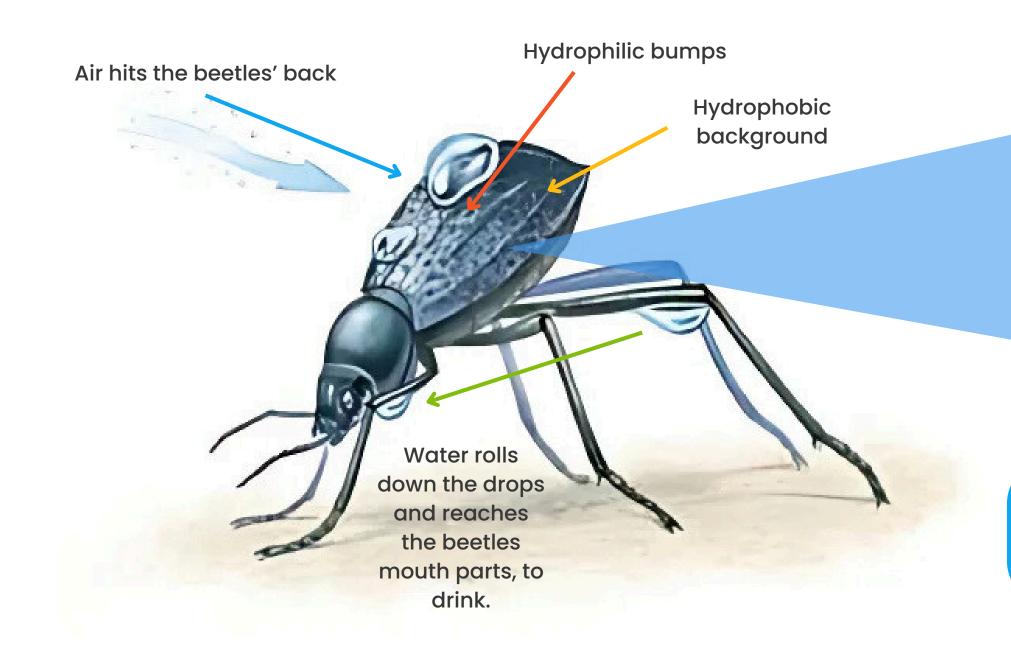
of energy is consumed by cooling systems in data centers.

2L of Water

are evaporated per kWh of cooling in data centers

Mechanical cooling systems, which use fans, compressors, chillers, or pumps to manage heat in data centers, are highly resource-intensive, often **depending on external water sources for processes like evaporative cooling.** Additionally, even when traditional cooling systems reuse water there is a limit because of risk of scale formations.

In high-humidity regions like Brazil, these systems become even less efficient, requiring more energy to handle moisture-laden air. This inefficiency leads to **substantial water and energy waste**, higher operational costs, and increased carbon emissions, making mechanical cooling unsustainable for long-term scalability, particularly in water-stressed or energy-sensitive areas.


To encourage and keep the growth of Brazil's Al market, building innovative solutions to control temperature and humidity levels is essential.

A passive cooling system for data centers that captures and reuses atmospheric moisture using hydrophobic panels inspired by the Stenocara beetle, reducing both water and energy consumption by minimizing reliance on mechanical cooling.

Inspired by the Stenocara beetle, harnesses moisture to cut water and energy use.

In the scorching deserts of Namibia, the Stenocara beetle survives by pulling water straight from the air. What if Microsoft's data centers could do the same? Our bio-inspired solution turns humidity into a resource, slashing water

waste while keeping operations cool.

A mix of hydrophilic and hydrophobic materials attracts and directs water.

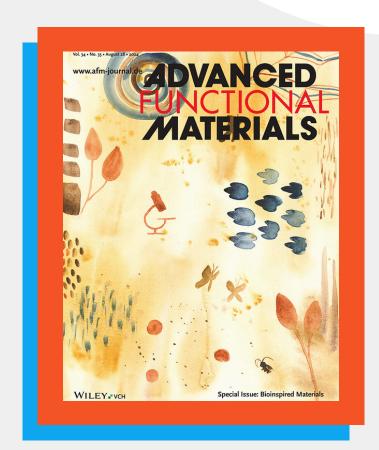
Inspired by stenocara-beetle we can build panels to collect water with zero energy

Optimize Panel Design for Maximum Water Capture

Refine the hydrophilichydrophobic pattern to enhance moisture collection efficiency and ensure effective water drainage for cooling.

Integrate with Existing Cooling Systems

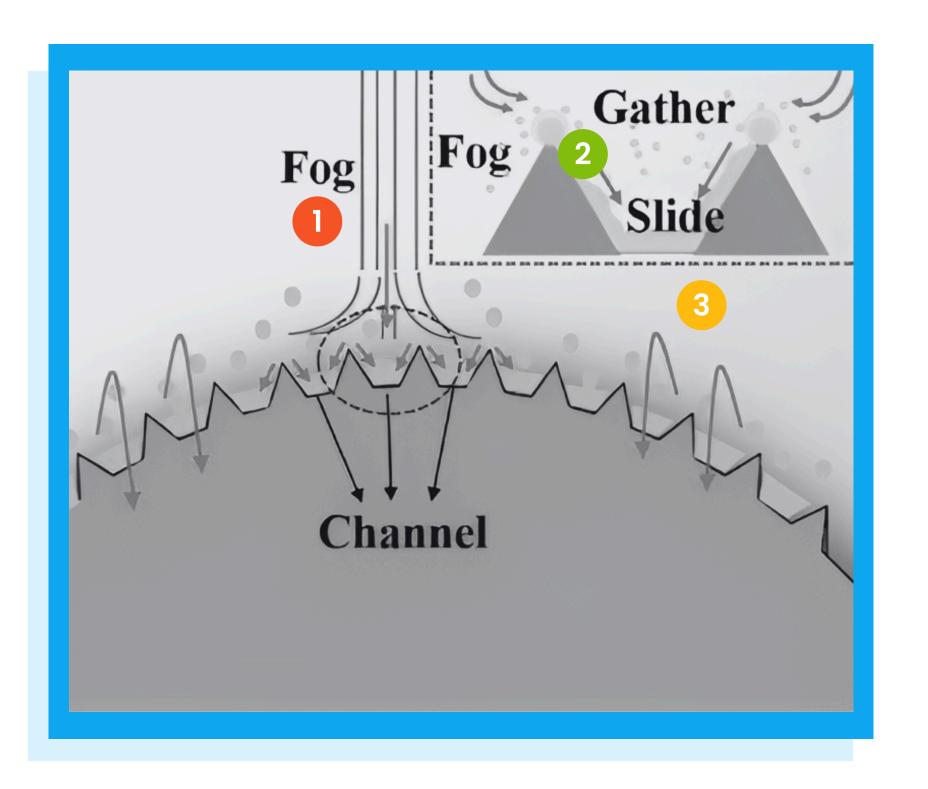
Develop a seamless method to channel collected water into current data center cooling infrastructure, minimizing energy and water consumption.



Reap the Benefits of Passive Design

Capture water naturally with a passive system that lowers costs, saves energy, reduces maintenance, and boosts sustainability.

Increasing surface for panel design for large scale water capture via biomimicry


Bioinspired fog harvesting, modeled after nature, has improved efficiency by up to 8x, offering a sustainable large scale water collection solution for data centers in water-scarce and humid regions.

The study validates biomimetic fog-harvesting technology by showing that surface patterns inspired by the Stenocara beetle do not improve water collection efficiency, but influence drop coalescence and motion, aiding optimization for practical use.

Water Droplets Merge and Collect for Cooling, Reducing External Water Use

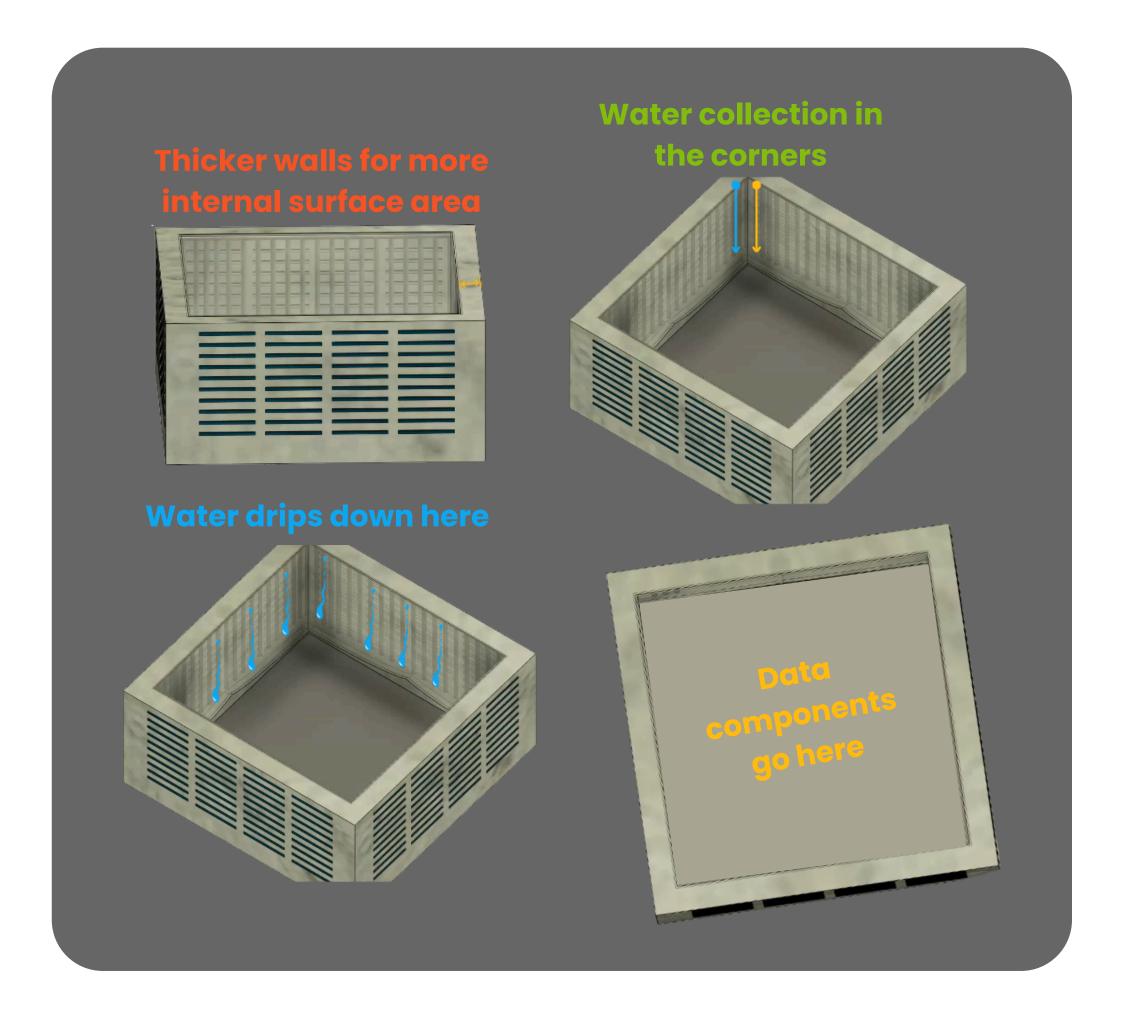
Interception & Deposition
Tiny airborne water droplets (1-40 micrometers) attach to the panel's surface.

Coalescence & Growth

Small droplets merge on hydrophilic nodes, forming larger water drops.

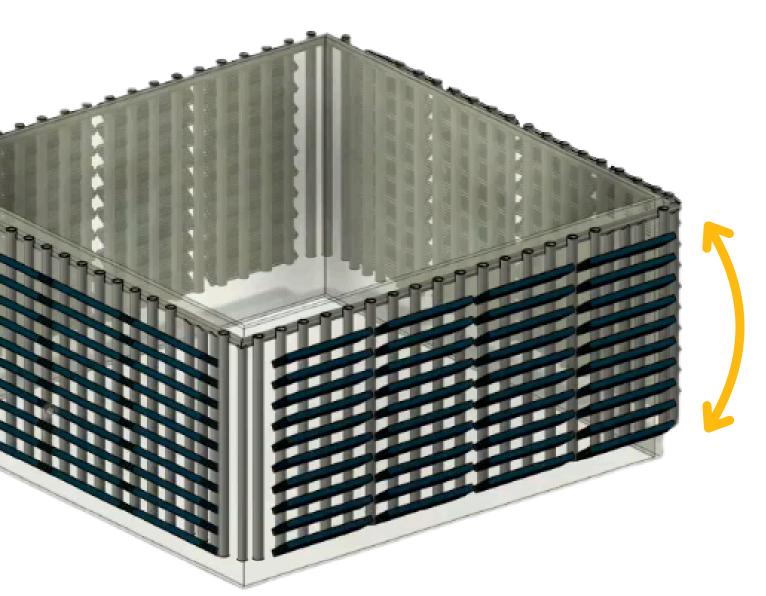
Drainage & Collection

The collected water is funneled and repurposed for cooling, reducing external water consumption.

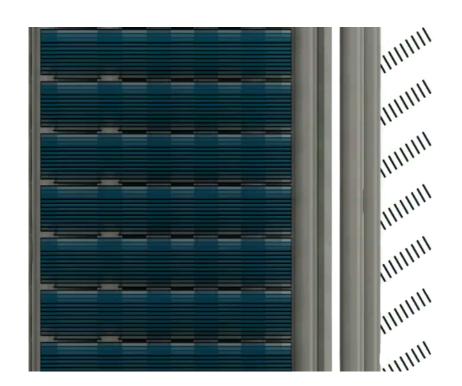

Mimicking the Stenocara Beetle to Protect Data Centers

This is cool! Click it...now

The Video


Also look at this!

The 3D Model



How our Structure Collects and Directs Water

Multiple
sub-layers
for greater
efficiency
and surface
area

Tilted design increases surface area

Water collected by the mesh flows downward

100M Liters of water saved per year in Microsoft Brazilian Data center.

The typical water usage range per data center using mechanical cooling is 960-1175 Million Liters.

With a 10% water harvesting efficiency, the potential water recovery is 96-117.5 Million liters per data center. Saving \$84K - \$100K annually, at an average water price of \$0.88 per 1,000 liters.

To see calculations click here or see appendix

Microsoft 2030 is to become environmentally sustainable and meet the market needs

Helps water scarcity

This solution supports
Microsoft's 2030 waterpositive goal by
replenishing more water
than it consumes while
ensuring data center
stability in South America
and humid places amid
growing droughts and
water scarcity.

Massive reduction in water and energy usage

Hyperscale data centers
can become carbon
neutral by reducing
reliance on traditional
cooling. Our solution
proves a 5% to 18%
efficiency, lowering 70%
humidity to around 63%
and cutting water usage.

Scalability and expansion

This innovation allows
Microsoft to expand into
humid regions once
deemed inefficient while
scaling globally to waterstressed areas like the
Middle East, Australia, and
California, advancing
sustainability goals.

Risks include variable water collection efficiency and high initial implementation costs

Variable Atmospheric Humidity & Water Collection Efficiency

The efficiency of water collection depends on relative humidity levels. If ambient air moisture is too low, water collection may be insufficient.

However, key places where Microsoft Brazil's data centers are located, like <u>São Paulo</u> and Rio de Janeiro, are pretty consistent with their humidity levels since they are very tropical and that esentially boosts moisture.

Implementation Costs

While the initial implementation cost for installation may be high, the long-term savings will outweigh the initial investment by far.

Additionally, partnering with local net/mesh suppliers can decrease the material and shipping cost.
While also positively impacting the local economy.

Example Cost for One of Microsoft's BrazilianData Centers

The mesh is generally made from materials like nylon, polyethylene, or polypropylene netting, often referred to as 'shade cloth'. These materials can be produced in different densities to capture varying amounts of water

Based on Google Maps measurements, Microsoft's data center in **Rua Uirapuru, 340, Chácara Recreio Alvorada 13183-752 Hortolândia Brazil**has a perimeter of approximately 1,800 meters (550m x 350m). Assuming the panels are installed at a height of 4 meters along the entire perimeter, the total surface area required would be:

4m×1800m=7,200 m^2

With a material cost of **\$25 - 37 per square meter**, the total estimated cost for a single layer of panels around the data center would be:

7,200m^2×25\$/m^2 = \$180K

It's important to note that this estimate accounts only for the material cost

of one layer of panels. Maintenance costs are minimal, as the panels have a lifespan of 10 years with little need for upkeep.

Phase 1 - Implementation

Microsoft can test the foundation of the solution in 7 months

Months

1-2

Feasibility & Concept Validation

• Conduct simulations and lab-scale tests to validate the biomimetic panel design (hydrophilic nodes and hydrophobic surfaces).

Months

3-4

Prototype Development

- Fabricate modular prototype panels and integrate them with a small test segment of an existing cooling system.
- Install preliminary monitoring tools to capture performance metrics.

Month

5

Initial Testing & Data Collection

 Run the prototype in a controlled environment to assess moisture capture efficiency and cooling performance.

Phase 2 - Implementation

Microsoft can launch a pilot and scale up in 12 months

Pilot Deployment & Optimization

- Deploy the optimized prototype in a pilot setting within a Microsoft datacenter.
- Refine system parameters based on real-world performance feedback and ensure compatibility with closed-loop water reuse systems.

Months

6-7

Scale-Up & Full Deployment

- Initiate phased retrofitting across selected Microsoft data centers.
- Integrate the system with existing water reuse and cooling infrastructures while
- establishing continuous performance monitoring.

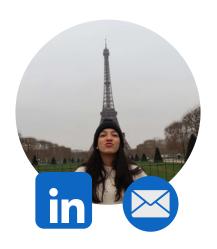
Months

8-12

Monitoring & Scaling Globaly

- Continuously monitor, evaluate, and iterate on the system to further enhance energy efficiency and water conservation, contributing toward Microsoft's sustainability goals.
- If it works in 1 datacenter it can work in other data centers with similar regional characteristics. This phase will be focused on bringing the technology to a globally.

Ongoing


Your Inspired stenocara beetle biomimicry solution can have a real positive impact. For example, some data centers are located in regions where water is becoming scarce, and this solution could provide them with more. It's a remarkable breakthrough!

Mathieu Green

Consultant | Entrepreneur at Horizon TI

Malek Hammoud
Technical

Maria Rivas
Problem &
Biomimicry

Ayman Oumamass
Cost

Kathya Otero
Impact numbers

Dear Microsoft,

We would like to express our sincere thanks to your team for this wonderful opportunity to help Microsoft achieve its vision: of scaling AI sustainably. As a team passionate about problemsolving, we have learned so much and will be able to apply this knowledge into future projects we take on. This chance to contribute an idea to help Microsoft's sustainability goals was a truly special experience.

The four of us are extremely excited to see the company grow even more. Please contact us with any questions or comments about our recommendation. We hope our proposal inspires further action!

Best regards,Maria, Malek, Ayman, and Kathya

Appendix

Calculations <u>Sources</u>